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OPTIMUM AIRPLANE FLIGHT PATHS*

By Placido Cicala

SUMMARY

The generalized equations are discussed which pertain to an air-

plane executing its flight path in a single vertical plane, under a

sequence of stipulations specifying the nature of the local optima which

are distinctly different in character along successive portions of this

path. The aerodynamic and propulsive characteristics of the airplane

are allowed to be specified with complete generality.

*"Le Evoluzioni Ottime di un Aereo." Atti della Accademia delle

Scienze di Torino, Vol 89, May 1955, PP. 350-358. This paper was pre-

sented at the session of 18 May 1955, by Prof. Cicala, a National Member

of the Academy.



INTRODUCTION

In a previous paper I the equations were discussed which govern the least-

tzme optimization of the flight path of a given airplameo It is the purpose of thLs

present study to extend the concepts utilized there in order to make them apply

to a much broader classification of such problems, including now the question

of minimizing the fuel consumption. It is proposed to examine the necessary

and sufficient conditions which must be fulfilled in order to give assurance that

the desired optima will be achieved throughout the consecutive stretches of the

connected trajectory along which the airplane is supposed to be operating

according to the dictates of the several individual and different restrictions

imposed successively on its behavior. It will be noted that the boundary condi-

tions are assigned in such a way as to preserve complete generality in the treat-

ment being expounded

Particular attention is to be focused on the transition process which takes

place in passing over, from one scallop of the trajectory where the airplane is

obeying the dictates of a particular set of conditions to come abruptly under

the influence of a distinctly different set of imposed oonstraints on an adjacent

portzon of its path_ Detailed analyses will serve to illustrate how a quite gen-

eral method of attack may be set up for arriving at tlxe sought solution to such

flight paths, specified by constraining conditions tha: can change in character

from one adjoining scallop of trajectory to the next.

No attempt will be made here to recapitulate all tae basic hypotheses upon

which these analyses have been predicated; the interested reader is referred

for these particulars to the exposition given in Reference 1. Likewise the bib-

liographic material listed in that reference should also be consulted for purposes

of better orientation. Nevertheless, it is appropriate to make special mention

here of the important paper by Garfinkel 2 wherein he presents a truly penetrating

variational treatment of airplane performance, althcugh, unfortunately, his

study is partially restricted because of some of the confining hypotheses imposed;

m particular, there is a limitation to small angles of inclination for the flight

path, and, in addition, a special sort of engine is premised.



D_FII'_I'_'ION._: Am) ;_IO!['A'[!lOm:

Let the mass of the airplane be denoted by m. This mass is considered to be

concentrated at a point; the velocity vector _ which is associated with the motmn

of this point is agreed to lie entirely within a single vertical (x, z)-plane. The

following forces are assumed to be apphed to the mass in question: the weight

W = m g is aligned with the negatively directed vertical ordinate; il e., it acts

along -_, while the lift, L, is taken to be perpendicular to V. Likewise, the

drag, D, and the thrust, T, are taken to be parallel to the vector _o The angle

that the tangent to the trajectory makes with the horizontal is to be represented

by the symbol _', so that _ is the angle between _ and the x-axis.

Furthermore let it be premised that the drag and the lift are going to be

known functions of the speed, V, the altitude, z, and the angle of attack, a,

which determines the orientation of the airplane with respect to the direction of

V. L_kewise let it be supposed that the thrust is given as a functmn of the speed,

V, the altitude, z, and the fuel consumption, /3, which is identical to the rate of

decrease in the mass, m.

Let the customary convention also be adopted that a dot over a symbol is to

denote that the total derivative of the so-indicated quantity with respect to time

is meant. In additmn, the partial derivative of a quantity with respect to a cer-

tain variable will be denoted by affixing the corresponding subscript to the sym-

bol representing the function in question, with the exception that the subscripts

i and j, or any numeral, will have their usual ordering significance. If the

ordering indices i or j appear twice as a subscript in any term, it is to be taken

for granted, as is familiar from tensor notation, that a summatmn symbol

stands in front of the term. Thus this shorthand notation indicates that the sum

must be taken of all such terms with every sequential integer supplied through-

out the range of the indicated indices.

In order to recast the present problem pertaining to flight path optimization

into the more convenient notation appropriate to a general variational analysis,

the following transliterations may be made:



Take 91 = X - V cos _ (1)

9z -- _. - V sin _ (2)

93 -- ;J + g sin _ - (D-T)/m (3)

9, = V_ + g cos_ - L/m (4)

9 _ -- rh, _ (s)

Y0 = T, Y2 = z, Y4 = _0,

Yi = x, Ys= V, Ys=m _ (6)

F =).j 9j (for j= 1,'",5) (7)

and H = Yi F_l (for i = 1,.-.,5) (8)

where _ (t) are the Lagrangian multipliers.

The general variational problem under consideration may be stated now as

follows, conforming to Mayer's interpretation: one wishes to find functions

yi, "" "ys, a, and _3, depending on the temporal variable t, which will minimize

the quantity that depends on the values that these var _ables take on at the end-

points A and B of a specified interval. The quantity so to be minimized is

usually expressed in the form of the difference produced in a certain given

function G when evaluated at the ends of the selected interval AB; i. e., the

function to be minimized is regularly written as G(B) -G(A). This is the mean-

ing to be attached herein to the requirement for finding an optimum path. If

one wishes to attempt the maximization of a functional quantity, it is resolved

into nothing more than finding a minimum, as defineC above, through mere

reversal of the sign.

Now let the variation in the function G be denoted by 6 G(A), so that

0G=G_j 0yj (forj =0,"-,5) (9)

where the indicatedderivatixesofG are to be evaluated at the end-pointA.

Likewise, leta specializedvariationin F be denoted by 0*F(A), by which is

meant t_.t

0*F= F#i 0y_H0t (fori= 1,.-._5) (10)

where again the indxcatedderivlttivesof F are to be evaluated at the end-point

A.
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NECESSARY CONDITIONS FOR A MINIMUM

For solution of the variational problem according to the Mayer interpretation

it is seen that the pertinent Euler's Equations, dF h/dt = FyL, for i taking the

value of 1, 2, 3, and 5, now may be written explicitly as follows:

iz : 0 (11)

_z + }`s (T, -D,)/m+X4L,/m : 0 (12)

_,3 + }`1 cos _ + }.2 sin _ + Xs (Tv-Dv)/m + },4 (Lv/m- _) = 0 (13)

ks + As (D-T)/m 2 - X4 L/m _ = 0 (14)

In place of the corresponding equation obtained for the index i = 4 tt will be

most convenient to make use of the first integral for F, which is H = c where

c is a constant. That this is a first integral for F may be readily recognized by

the fact that from Eq. (7) one has _F/_t = 0. Consequently, the constraining

relation that exists between the variables in this instance is

}`lk + x_. + }`sV + x4V_" + x6m = c (15)

In the case of the variables a and/3 the corresponding Euler's Equations

are simply Fa = F/3 = 0. If then the differential quotient Da/L a is written

simply as DL, it follows that the corresponding restraints znvolwng a and 3

are

X4 = }`s DL (16)

and }`5 = }`sTi3/m (17)

Thus, the set of equations written down here as Eqs. (11) through (17)

constitutes, when used in conjunction with the equilibrium conditions and

definitions embodied in setting q_i = 0, for i running from 1 through 5, a

differential system, which must be satisfied by the several vamables involved

when they are describmg the sought optimum trajectory.

If it should so happen that one wants to invoke the condition that for a part

of the trajectory there shall be no change in altitude, so that z is constant,

then it will be necessary to relinquish the constraint embodied in Eq. (12).

Likewise, if the angle of attack is not allowed to vary, so that a remams

constant, then it is necessary to relinquish the condition prescribed by Eq. (16).

In similar fash_.on, if the fuel consumption is considered to be fixed - for



example, when the engine is kept at full throttle - then it will be necessary to

drop Eq. (17).

The boundary conditions to be imposed are 12 in number. These boundary

conditions are made up of a certain number of assigned stipulattons, but the

rest will be imposed, of course, in consequence of the equivalence expressed as

5*F(A) + 5G(A) = 6*F(B) + 5G(B) (18)

which must hold regardless of the arbitrary choices that are made for the vari-

ations, 5y, to which the differential system may be subjected, provided merely

that the constraints are not violated by such choices Itis not possible to dis-

cuss the existence of an actual solution for a variational problem thus set,

except by consideration of specific cases.

For a particular example, let the situation be considered wherein the end-

point A is prescribed, or let itbe presumed that the values of Y0, ••"Ys are

assigned to start with° For such situations the sigmftcance of Eq. (18) becomes

speciahzed to the statement that the right hand side ,>fthe equation must equal

zero. Then, ifit is demanded that the duration of the flightis to be a minimum,

one must set c = 1, while ifttis required that the farthest x-value be attained,

or the highest z-value or the fastest V-value, itwould be necessary to _mpose

the condition that _i = 1, or ),2= 1, or _,s= 1", respoctively, at the end-point B.

If nothing is specified about the time of flight, or ifthe time of flightdoes

not exphcitly appear in the function G nor in the stat_:ment of the boundary con-

dttions, then one takes c = 0o Ifthe horizontal dtstmme flown is unrestricted,

then ;_ is to be taken equal to zero. If, on the other hand, the angle, _, of the

fhght path wlth respect to the horizontal is allowed to have any value at will by

the time the end-point B isreached, then in these circumstances, the Lagrangian

nultiplier )_ = 0. Thus, whenever the angle of attack ts not selected beforehand,

then the angle of attack ts required to vary according: to the dictates of Eq. (16),

which means that the plane has to fly in the attitude :!orminimum drag.

*Nothing ts altered if one selects some value other than unity when invoking these

conditions. It may be noted, in fact, that Eqs. (11) through (17) are homogeneous
in the Lagrangian multipliers, and, besides, these multipliers do not enter into

the statement of the imposed physical boundary conditions. Furthermore, it is
obwous that the solution which minimizes G wtll also provide the minimum for
the case when any positive factor multiplies this G-function.



In the event that one does not choose to take into account any variation in the

weight of the airplane (Fro-- 0). it is necessary to have ),s = 0. Under such an

assumption and provided there is no overriding restriction on the way the fuel

consumption has to behave, then the rate of fuel consumption has to be selected

as the value giving T/3 = 0, or else it has to remain fixed at one of its end-point

values.

Finally, if it is required to solve the interception problem, which consists of

selecting the best route to follow in order to collide with another airplane having

the general path specified by x = X(t)

z -- z(t)

tt is necessary to invoke the stipulation (the so-called intercept condition) that

_1 :K + ),_ Z = constant . (19)

SUFFICI]_]i'[f COIfDITIONS FOR A MII_I/@JM

The strong conditions of Legendre for a minimum demand that one should have

F_i }j 5y, 5yj >0 (for i, j = 1,'-', 7) (20)

for all variations _- that obey the conditions

=0 (for j = 1, "", 5)
(and for i= 1,...,7) (20')

where the further notational simplification has been introduced of setting

and yv =/3

Upon carrying out the indicated operations, it will be observed that Eq. (20)

implies that it is sufficient for assuring a minimum that one should have

F(_ >0 and F/h3>0. The first of these conditions may be more explicitly written

as

_3 (Dac _- DL Laa)/m>0 (21)

Ifthe liftand drag can be written in the customary separated form suggested

by dimensional analysis, so that

L = c'(a)f(V,z) and D= c"(a) f(V,z) (22)

where c' and c" stand for the usual coefficients of liftand drag, then the

sufficient condition written as Eq. (21) reduces just to the requirement that



d2c ''
ks _ _0 (23)

In consequence of invoking the other sufficLency condition, one obtains the

explicit expressLon

_,3T_ _ 0 (24)

The appropriate Weierstrass condition which applies Ln this instance may

be written as

E =ks(AD-D LAL- AT+ T_A_)>_ 0 (25)

where the significance of the symbols is as follows. The AL and AD represent

the variahons produced in L and in D, respectively, in consequence of an arbi-

trary change in the angle of attack, AS. Likewise AT stands for the variation

in thrust produced by an arbitrary change A_3, when V and z are held fixed° The

condLtion written as Eq. (25) constitutes an extension, now applying over the

entire operating range of the airplane or engine, to the requirement for con-

cavity or convexity that the Legendre sufficiency conditions impose merely in

the neighborhood of a single operating point on the airplane polar and the engine

thrust chart.

The conventional conditions for a minimum, as stated by Jacobi, may be re-

formulated in various ways in order to extend their c.riginal concept and mode

of application s . These applications will require different analytic developments,

however, depending on the kinds of boundary condition which enter the specific

problem in hand_ Because of the complexity of the required developments and

because it must be acknowledged that in practice one has to deal with many

extremal solutions, the problem u_ually resolves itself into a check merely on

whether or not the extremals in question are going tc cover simply, in the mathe-

matical sense, that part of the plane of the trajectory plots where the solution of

interest lies.
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DISC0_CSIP_UITIES II_ THI] AIIRPLANE'S FOLAR 01{ IN T}_-SENGINE'S THRUST

NOW consider what happens at a trz_nsition point between two scallops of the

sought trajectory where two different kinds of restraint are to be obeyed on either

side of thls point of demarcation. At such a point the Erdmann-Weierstrass

conditions may be satisfied by setting equal the corresponding values of the special

variation 6*Fo This has to be done at each instance where [here occurs a discon-

tinuity in the polar curve of the lifting ensemble or in the thrust curve of [he engine.

If the inequalities written as Eqo (20) are satisfied on both sides of the point of

transition then the imposition of the above-mentioned conditions leads [o the con-

clusion that the Lagrangian multipliers and the constant c ought not to change value

in traversing the transit[on point in question

Let attention be focused, in particular, upon what transplres at a location where

[here is a sharp ch._nge in the value of DL. It will be seen that in this case the

continuity of A3 and A4 is not compatible with the restrain[ stated as Eq. (16).

Therefore, this constraint has to be disregarded, and one proceeds along a piece

of extremal curve for which (_ remains constant. By proceeding along this scallop

of the trajectory one finally reaches the point where the two Lagrangian multiphers

take on such values as to once again satisfy the constrain[ embodied in Eq. (16)

even with the new jumped-in-value slope D L o After this happens, then the angle

of attack (_ once more begins to vary in just the same way it did before, or else

in the opposite sense, depending on whether the ratio A4/A3 has already attained the

value that D E takes on along the new branch of the polar D(L) or whether [[ still

has the value belonging to the old branch.

Quite similar considerations apply for analogous corner-points (points of dis-

continuity in the derivatLve) encountered on the thrust curve for the engine, T@).

In this instance it becomes necessary to disregard the constraint written as

Eq. (17) and to take _ = constant over a stretch of the trajectory. Proceeding

along this scallop of the trajectory, holding j9 = constant, one continues on until

he attains the location where the value of },s/As becomes such as to satisfy once

again Eq. (17), either on the old branch or on the new branch of the operating

curve, which in general depends on V and Zo
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It should be remarked that the optimal trajectory .'an sustain instantaneous

jumps in the angle of incidence or in the discharge rate of the propellant in certain

cases even when the airplane polar and engine thrust curves behave in a continuous

way, and have continuous derivatives besides. Such a possibility has to be taken

into account when one is confronted with a singular problem, in particular when

one has to deal with the situation wherein a portion or several portions of the

polar D(L), or the engine thrust curve T_), is made up of a piece or pieces of

straight lineo

This particular difficulty also comes about indirectly when the polar and thrust

curves are such as to not satisfy the Legendre and Weierstrass conditions every-

where Take for example, the situation where the lift and drag are defined as in

Eq. (22), but where it so happens, as is commonly hr.ld to be the case for laminar

"low-drag" type airfods, that there is a bucket in the drag polar c"(c') of such a

nature that a tangent can meet the curve in two separ tte and distinct points A and B

Arriving at the point A along one branch of such a polar the convexity conditmn

d2c"/dc'2>0 will continually be in force, and then one may immediately make the

transition to point B, where the jumps in the non-dimensional coefficients Ac' and

Ac" corresponding to the segment AB will have for their ratio a value equal to the

slope at A, just as is demanded for satisfaction of the Erdmann-Weierstrass con-

ditions, as stated in Eq_ (15) Mathematically it would be possible, likewise, for

one to traverse the AB segment of the trajectory by means of a sequence of instan-

tar_eous increments in the angle of incidence, as one goes from one extremity, A,

to the other extremity, B, on the polar in question. Of course, such a solution is

not compatible with physical reality because of the inertial resistance to rotation

which a real airplane would have, but which is being _gnored in this treatment.

The straight line connections thus serve to lop off the convolutions of portions of

the polar where the Wemrstrass conditions would not be satisfied° Thus the polar

in question will take on the appearance of having a stl etched string joining any

crests or troughs that may be present inherently° Quite similar observa-
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tlons* apply to the thrust curve T_).

Tt:_E _[_4t:'LIF_[:D PRObLElq

If one is content to ignore the centrifugal forces, then it is clear that _ will drop

out of Eqs. (4) and (13), and consequently the job of determining the extremals can

be carried out in quite simple fashion° The Legendre condition will not, however,

be satisfied. In this case, in fact, because Eqs (1) through (8) do not contain_ ,

it is necessary to assume that _z4 = v_ Then one finds that the equation, correspond-

ing to Eq. (21), whmh now applies in these circumstances will contain the factor

(Daa- DLLaa)sin2_ - DLL_/L

whLch can become negative, as may be verified by making use of Eqo (22). When

this is done it is seen that the above-given expression may be rewritten as follows,

save possibly for positive multipliers:

sin2_ d2c '' de"
-c-q_

and this is always a negative quantity when the polar is parabolic.

Consider, for example, the case of horizontal free-flight (kl = 0) and the thrust

held constant (/3 = constant). In this instance it is found that the "trajectory" for

minimum time is composed of pieces of straight line, fimte or infinitesimal in

length, along which the attitude of the plane is verticle (_= i 2 )° To better appre-

ciate this situation, observe that when the problem is being analyzed by the direct

approach one has to admit that to achieve the shortest-time path a maneuver has

to be executed that is composed of a sequence of fragments of trajectory, at the

beginning and end of which the plane is in a vertical dive, while during the central

portion of which the plane zooms up in a climb, so that the following relation holds

V(T v - D V + LvD L) + T-D = V 2 (T z -Dz+LzDL)/go

*If E is a maximum or minimum point on the thrust curve T_), representing maxi-

mum or minimum discharge rate of the propellant, and if close by to this extremum

one has that TaM>0, it is not necessary to leave the curve at the point of inflection,
as Garfinkel s[_tes in Reference 2, in order to obey the Legendre conditions, but
rather one must leave the thrust curve at the point where the tangent passes through
E, in order to conform to the Weierstrass condition (so long as the tangent passes
above the origin where T = /3 = 0).



Thusthe completepath is madeupof a continuoussuccessionof suchwild excursmns
betweenthe limit valuesof the plane'sattitude.

In contrast to thts physically absurdsolutiononemaynote that a sensibleresult
is provided by useof the indirect method, illustrated in more detail* in Reference

4 Admittedly, the indirect solutionalso doesnot satisfy the conditionsof Legendre
andWeierstrass, but it is illuminating in that it glws the soughttrajectory as a
series of aperiodic zooms, or, that is, by meansof pathsalongwhichthere is no
dependenceon the attitude_, andyet this sort of solutioncomesvery close to the
exact solutionwhich is obtainedwhenonetakesinto accountthe actualcentrifugal
forces.

The problemthat hasbeengivensomescrutiny h{.*rein its generalform will not
presentany real difficulty whenonetakesup the formulation of the problemfor
various specific sub-cases. Neither doesit appearthat the numerical apphcations

shouldbeexcessively laborious, providedthat the boundaryconditionsapply
entirely to oneof the endpointsof the flight path, becausem this case the soluhon
maybeworkedoutby useof a step-by-step integration. Themost serious obstacle

in the wayof applyingthis methodin practice lies in the fact that the boundary
conditionswill be required to bemet at bothendpoiltts of the path, in most
engineeringproblems of interest. In sucha situation it will be foundto be rather

tiresome to try to pick out the correct initial valuesby trial anderror, so that

after working throughthe calculationsoneendsupw_ththe desired trajectory,
especially in view of the fact that the determ,nahon{,f numerousextremal curves
will alwaysbe foundnecessary in order to makesur_.• that the Jacobiconditions
are not contradicted

The numerical applicationscanbe carried out wita ease, however, if thepro-
cedure is adoptedof makingup the desiredextremal._outof a series of trajectory
scallops, alongeachof which _ and/3are held const_mtoWhenthis is doneit is

foundthat the problemmaybe reducedto a question }f finding just anordinary

*Seein particular Eqs (10)and (11}of the cited reference.



minimum. A calculation along this line of approach made with the equations pre-

sented above lends itself much more logically, however, to an analysis employing

the technique of successive approximations.

In using the scallops of trajectory along which a and _ are held constant, it

must be recognized that Eqs° (16) and (17) are not going to be in force. These equa-

tions may be used, however, to reveal the instant when one must transfer from one

branch to the other. The transfer from one scallop of trajectory to the next should

be made as soon as

_/_._ = AD/AL

or when ksm/ks = AT/A_

where the symbol A is used to indicate the jump corresponding to the selected

interval over which a and/3 are going to vary while V and z are held fixed.

If at first, the calculations are carried out by use of only a limited number of

selected trim positions of the airplane and with a small number of throttle settings,

then a more refined analysis may be made later by taking into account a larger

number of such selected values. This process of better approximations may be

carried out in a systematic way, so as to serve as a continuous check on the

flightpaths so determined.
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